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On the Topology of Lagrangian Milnor Fibres

Mauricio D. Garay and Duco van Straten

1 Introduction

Singularities of Lagrangian varieties are a fundamental object of study. They appear in

various contexts (see [1, 6]). For example, they play a role in the theory of complete in-

tegrable systems and their quantisations (see [2, 4, 7]). In [10], a complex associated to

a Lagrangian variety L ⊂ C
2n, analogous to the Koszul-Chevalley complex in the the-

ory of Lie algebras, was introduced. The first cohomology vector space of this complex

computes the infinitesimal deformation of the Lagrangian variety, like for the case of Lie

algebras.

In [4], a relative version of this complex was introduced for singular Lagrangian

fibrations. Under some transversality conditions, it was proved in that paper that the

higher direct image sheaves are coherent. In this paper, we prove that they are actually

sheaves of free modules, provided that the deformation is Lagrangian infinitesimally ver-

sal over a smooth base. This result enables us to prove that for such deformations, the

dimension of the first cohomology group of a Lagrangian Milnor fibre equals the codi-

mension of the singularity, that is, the dimension of the base of a Lagrangian miniversal

deformation.

2 Deformations of Lagrangian varieties

We recall briefly the construction of the complex of infinitesimal deformations of La-

grangian varieties, details can be found in [4, 5, 8, 9, 10].
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2.1 Lagrangian mappings

We consider the space C
2n = {(q1, . . . , qn, p1, . . . , pn)} endowed with the standard sym-

plectic structure ω =
∑n

i=1 dpi ∧ dqi. We denote by X a domain in C
2n. The Poisson

bracket {f, g} of two holomorphic functions f, g : X → C can be defined by the formula

{f, g}ωn = df∧ dg∧ωn−1. (2.1)

Recall that a Lagrangian submanifold of C
2n is ann-dimensional holomorphic manifold

on which the symplectic form vanishes. A Lagrangian variety is a purely n-dimensional

analytic variety L such that the smooth part of L is a Lagrangian manifold.

Definition 2.1. A Lagrangian mapping is a holomorphic map f = (f1, . . . , fn) : X → C
n

such that

(1) the variety {f = 0} is of pure dimension n,

(2) for all pairs i, j, {fi, fj} belongs to the ideal generated by f1, . . . , fn.

The zero-fibre of a Lagrangian mapping is a Lagrangian variety L ⊂ C
2n. On L,

we define a stratification as follows. Denote by X1, . . . , Xn the Hamilton vector fields of

f1, . . . , fn. Let l(q, p) be the dimension of the vector space generated by the Xi’s at p.

The stratum Lj ⊂ L is defined by

Lj =
{
(q, p) : l(q, p) = j

}
. (2.2)

We have that L =
⋃n

j=0 Lj.

Definition 2.2. The Lagrangian mapping f is called nondegenerate if, for any k, the vari-

ety Lk is of dimension at most k.

Remark 2.3. For n = 1, the nondegeneracy condition means that the origin is an isolated

singular point of the plane curve germ {f = 0}. This notion was introduced in [10, condi-

tion (P)], it can be considered as the symplectic analog of the notion of isolated singular-

ity of a complex hypersurface.

There exists an obvious notion of a Lagrangian deformation of a Lagrangian

mapping f : X → C
n with parameter space Λ: it is a holomorphic map

F =
(
F1, . . . , Fn

)
: Λ× X −→ C

n (2.3)

with F(0, ·) = f(·) and such that the Poisson brackets {Fi, Fj} with respect to the (q, p)

variables belong to the ideal generated by the Fk’s.
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On the Topology of Lagrangian Milnor Fibres 1935

There are obvious notions of equivalence and versality of deformations that we

will not spell out here.

2.2 The complex of Lagrangian infinitesimal deformations

Let f = (f1, . . . , fn) : (C2n, 0) → (Cn, 0) be a Lagrangian mapping germ. Denote by O2n

the ring of germs at 0 ∈ C
2n of holomorphic functions and by OL,0 the quotient ring of

O2n by the ideal I generated by fj’s. As for a complete intersection, one has I/I2 ≈ On
L,0,

the complex of Lagrangian infinitesimal deformations [10] which, in general, has terms

C·
f = Hom(

∧·
I/I2,OL,0) takes the form

C·
f : 0 −→ OL,0 −→

1∧
On

L,0 −→
2∧

On
L,0 −→ · · · −→

n∧
On

L,0 −→ 0. (2.4)

We consider the particular case n = 2 and refer to [8, 10] for the general case.

We use the identifications

1∧
O2

L,0 ≈ O2
L,0,

2∧
O2

L,0 ≈ OL,0.

(2.5)

Since f is a Lagrangian complete intersection, there exist a, b ∈ O2n such that

{
f1, f2

}
= af1 + bf2. (2.6)

We define the first differential to be

δ : OL,0 −→ O2
L,0,

h �−→ ({
h, f1

}
,
{
h, f2

}) (2.7)

and the second differential by

δ : O2
L,0 −→ OL,0,

(
m1,m2

) �−→ {
m1, f2

}
+

{
f1,m2

}
− am1 − bm2.

(2.8)

(In the definition of the differential, we abusively denoted a function in O2n and its pro-

jection in the factor ring OL,0 by the same symbol.)

It is readily verified that the first cohomology space of the complex C·
f is equal to

the first-order Lagrangian deformations of fmodulo infinitesimally trivial deformations,

where the coordinate changes have to be symplectic.
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The following result is due to Sevenheck and van Straten [10] (it is in fact valid

for more general Lagrangian varieties).

Theorem 2.4. If f is a nondegenerate Lagrangian mapping germ, then the vector spaces

Hk(C·
f) are finite dimensional. �

2.3 The relative complex of Lagrangian deformations

There is no difficulty in sheafifying the construction of the complex of Lagrangian de-

formations to obtain a complex of sheaves. There is also no difficulty in introducing a

relative complex of Lagrangian deformations, that is, a complex with parameters.

LetΦ : (Ck × C
2n, 0) → (Cn, 0) be a deformation of a Lagrangian mapping germ f.

In [4], it is explained how to construct the so-called standard representativesΛ for C
k, X

for C
2n, B for C

n, and F : Λ×X → B forΦ that are appropriate for this situation. The rela-

tive complex of Lagrangian deformations associated to F is supported on the subvariety

Y ⊂ (Λ× X) defined by

Y =
{
(λ, x) ∈ Λ× X : F(λ, x) = 0

}
, F =

(
F1, . . . , Fn

)
. (2.9)

Therefore,we will denote the complex of Lagrangian deformation associated to F by C·
Y/Λ.

The map

ϕ : Y −→ Λ,

(λ, x) −→ λ
(2.10)

will, abusively, be called a standard representative of the deformationΦ.

Finally, remark that the symplectic structure on X defines a Poisson structure on

Λ× X and that the Hamilton vector fields of the components F1, . . . , Fn of F are tangent to

the fibres of ϕ.

In [4], the following coherence theorem was proved.

Theorem 2.5. If ϕ is a standard representative of a deformation of a nondegenerate La-

grangian mapping germ, then the following properties hold:

(a) the sheaves R
pϕ∗C·

Y/Λ are coherent sheaves of OΛ-modules;

(b) there is a canonical isomorphism of OΛ,0-modules

(
R

pϕ∗C·
Y/Λ

)
0
≈ Hp

(
C·

Y/Λ,0

)
. (2.11)

�
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2.4 The Lagrangian τ = µ theorem

Before formulating the theorem, we need some definitions.

Definition 2.6. A deformation Φ : (Ck × C
2n, 0) → (Cn, 0) of a Lagrangian complete

intersection germ f : (C2n, 0) → (Cn, 0) is called infinitesimally L-versal if the cohomol-

ogy classes of the restrictions of the ∂λj
Φ’s to λ = 0 generateH1(C·

f).

A Milnor fibre Lλ of a deformation Φ : (Ck × C
2n, 0) → (Cn, 0) of a Lagrangian

mapping germ f is a fibre Lλ = {ϕ−1(λ)} of a standard representative ϕ : Y → Λ of Φ

which is smooth. If such smooth fibres occur, the deformationΦ is called a smoothing of

L = L0.

We denote by β1, . . . , βn the Betti numbers of a Milnor fibre of the deformationΦ.

Theorem 2.7. If the deformation Φ is an infinitesimally L-versal deformation of f, then

for any standard representativeϕ ofΦ, the sheaf R
1ϕ∗C·

Y/Λ is a sheaf of free OΛ-modules.

IfΦ is a smoothing, then the rank of this module is equal to β1. �

This result implies the following Lagrangian version of the classical τ = µ theo-

rem for isolated hypersurface singularities.

Corollary 2.8. The vector space H1(C·
f) is of dimension β1 provided that there exists a

smoothingΦ of L. �

Example 2.9. Consider the Lagrangian mapping germ

f =
(
f1, . . . , fn

)
:
(
C

2n, 0
) −→ (

C
n, 0

)
(2.12)

defined by

fi = piqi. (2.13)

A straightforward computation shows that the deformation

Φ =
(
Φ1, . . . ,Φn

)
:
(
C

n × C
2n, 0

) −→ (
C

n, 0
)

(2.14)

defined by

Φi = piqi + λi (2.15)

is infinitesimally L-versal. Thus, as can be seen directly, the Milnor number of a La-

grangian fibre is equal to n.
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One may conjecture that more generally the sheaves Hk(C·
Y/Λ) are sheaves of free

OΛ-modules of rank βk, which will imply that the vector spaceHk(C·
f) is of dimension βk

for germs of smoothable Lagrangian varieties.

3 Proof of Theorem 2.7

3.1 The sheaf R1ϕ∗CY/Λ is a sheaf of free modules

With the same notations as before, let λ1, λ2, . . . , λk be a system of coordinates on Λ near

0 and put Λ0 = Λ and

Λp =
{
λ1 = λ2 = · · · = λp = 0

} ⊂ Λ. (3.1)

Let ϕ0 = ϕ and denote by ϕ1 the restriction of ϕ above {λ1 = 0}, that is,

ϕ1 : Y1 −→ Λ1 (3.2)

is defined as the projection of

Y1 =
{(
0, λ2, . . . , λk, x

)
: F(λ, x) = 0

}
(3.3)

to Λ1. In this way, we get a sequence of deformations of the Lagrange variety L: ϕ0, . . . ,

ϕk, where ϕj is the restriction of ϕ above Λj. The sequence ends at ϕk which is the con-

stant deformation

ϕk : L −→ {0} (3.4)

of the Lagrangian variety L.

Denote by ip the injective map

ip : C·
Yp/Λp

−→ C·
Yp/Λp

,

[m] −→ λp+1[m]
(3.5)

and by rp the restriction map

rp : C·
Yp/Λp

−→ C·
Yp+1/Λp+1

,

[m] −→ [m]|λp+1=0.
(3.6)
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On the Topology of Lagrangian Milnor Fibres 1939

We assert that there is an exact sequence

0 −→ H1
(
C·

Yp/Λp

) i∗p−−→ H1
(
C·

Yp/Λp

) r∗
p−−→ H1

(
C·

Yp+1/Λp+1

) −→ 0. (3.7)

Here Hi(−) denotes the cohomology sheaf of a sheaf complex. We prove this as-

sertion in the next two lemmas.

Lemma 3.1. The map ip induces an injective map of the first cohomology sheaves

i∗p : H1
(
C·

Yp/Λp

) −→ H1
(
C·

Yp/Λp

)
. (3.8)

�

Proof. First, we remark that there is an exact sequence of complexes

0 −→ C·
Yp/Λp

ip−−→ C·
Yp/Λp

rp−−→ C·
Yp+1/Λp+1

−→ 0. (3.9)

This exact sequence induces a long exact sequence in cohomology

· · · −→ Hk
(
C·

Yp/Λp

) i∗p−−→ Hk
(
C·

Yp/Λp

) r∗
p−−→ Hk

(
C·

Yp+1/Λp+1

)

−→ Hk+1
(
C·

Yp/Λp

) −→ · · · .
(3.10)

We assert that for any p, the sheaf H0(C·
Yp/Λp

) can be identified with the sheaf

(ϕp)−1(OΛp). This implies, in particular, that the map

H0
(
C·

Yp/Λp

) r∗
p−−→ H0

(
C·

Yp+1/Λp+1

)
(3.11)

is surjective.

LetU be a small open subset inΛp. Let h ∈ OYp be a representative of a cohomol-

ogy class in H0(C·
Yp/Λp

)(U). Denote by Xp
i the restriction of the Hamilton vector field of Fi

to Yp. Since h is a coboundary, h commutes with the restriction of the Fi’s to Λp, that is,

{
h, Fi

}
|Λp

= LXp
i
h = 0, i = 1, . . . , n. (3.12)

As f is nondegenerate and ϕ is a standard representative of a deformation of f, it

follows that for a fixed value of λ, the Xp
i ’s generate the tangent space to (ϕp)−1(λ) at any

point. Thus, equality (3.12) implies that h is constant along the fibres of ϕp. This proves

the assertion.
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Consequently, the long exact sequence splits at H0(C·
Yp+1/Λp+1

) and we have the

exact sequence

0 −→ H1
(
C·

Yp/Λp

) i∗p−−→ H1
(
C·

Yp/Λp

) r∗
p−−→ H1

(
C·

Yp+1/Λp+1

)

−→ H2
(
C·

Yp/Λp

) −→ · · · .
(3.13)

This proves the lemma. �

Lemma 3.2. For any p ∈ {0, . . . , k}, the restriction map rp induces a surjective map of the

first cohomology sheaves

r∗p : H1
(
C·

Yp/Λp

) −→ H1
(
C·

Yp+1/Λp+1

)
. (3.14)

�

Proof. Fix p ∈ {0, . . . , k} and denote by ψp
i the restriction of ∂λi

F to Λp = {λ1 = · · ·=λp =0}.

It is readily verified that the coboundary of ψp
i ∈ C1

Yp/Λp
vanishes for any i ∈ {1, . . . , k}.

We assert that there exists a small neighborhood U of the origin in Λ such that

the cohomology classes of the ψp
i generate H1(C·

Yp/Λp
)(ϕ−1(U)) = R

1ϕ∗C·
Yp/Λp

(U).

Indeed, Theorem 2.5 says that R
1ϕ∗C·

Yp/Λp
is a coherent sheaf on Λp and that its

zero-fibre is isomorphic to H1(C·
Yp/Λp,0). Thus H1(C·

Yp/Λp,0) is an OΛ,0 module of finite

type. Since Φ is infinitesimally L-versal, the cohomology classes of the restrictions to

λ = 0 of the germs at the origin of the ψp
i generate H1(C·

f). Thus, the Nakayama lemma

implies that the cohomology classes of the ψp
i generate H1(C·

Yp/Λp,0) = (R1ϕ∗C·
Yp/Λp

)0.

Therefore, by the coherence property, there exists a small neighborhood U of the origin

in Λ such that cohomology classes of the ψp
i generate

H1
(
C·

Yp/Λp

)(
ϕ−1(U)

)
=

(
R

1ϕ∗C·
Yp/Λp

)
(U). (3.15)

This proves the assertion.

Now, for [m] ∈ H1(C·
Yp+1/Λp+1

), we write

[m] =

k∑
i=1

ai

[
ψ

p+1
i

]
. (3.16)

Then, [m] is the image under r∗p of
∑k

i=1 ai[ψ
p
i ]. This proves the lemma. �

The exact sequences

0 −→ H1
(
C·

Yp/Λp

) −→ H1
(
C·

Yp/Λp

) −→ H1
(
C·

Yp+1/Λp+1

) −→ 0 (3.17)
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imply that (λ1, . . . , λk) is a regular sequence of the Oλ,0-module (R1ϕ∗C·
Y/Λ)0. This means

that (R1ϕ∗C·
Y/Λ)0 is a Cohen-Macaulay OΛ,0-module, hence free (see, e.g., [3]). The coher-

ence of the sheaf (R1ϕ∗C·
Y/Λ)0 implies that in some neighborhoodU of the origin, there is

an isomorphism

(
R

1ϕ∗C·
Y/Λ

)
|U

≈ (
O

µ
Λ

)
|U

(3.18)

for some nonnegative µ. This proves the first part of Theorem 2.7.

3.2 The dimension ofH1(C·
f) is equal to β1

Let m̄1, . . . , m̄k be a basis ofH1(C·
f).

Denote byΩ·
Y/Λ the relative de Rham complex

Ωk
Y/Λ =

(
Ωk

Y/
(
ϕ∗Ω1

Λ ∧Ωk−1
Y

))
. (3.19)

Let X1, . . . , Xn be the restriction of the Hamilton vector fields of the Fi’s to Y.

The map

Ω1
Y/Λ −→ C1

Y/Λ,

α �−→ (
iX1
α, . . . , iXnα

) (3.20)

induces a map from the relative de Rham complex Ω·
Y/Λ to the complex of Lagrangian

deformations C·
Y/Λ. Here iXi

α denotes the interior product of the one-form α with the

vector field Xi.

As one easily sees, this map is an isomorphism at the smooth points of the fibres

of ϕ : Y → Λ (see [10]).

We now take λ0 in the small neighborhood U ⊂ Λ, such that the fibre of ϕ at λ0 is

smooth. The following lemma concludes the proof of the theorem.

Lemma 3.3. The rank of the free OΛ,λ0
-module (R1ϕ∗C·

Y/Λ)λ0
equals the dimension of

H1(Lλ0
,C). �

Proof. Since the fibre of ϕ at λ0 is smooth, we have an isomorphism

(
R

1ϕ∗C·
Y/Λ

)
λ0

≈ (
R

1ϕ∗Ω·
Y/Λ

)
λ0
. (3.21)
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1942 M. D. Garay and D. van Straten

Then, the freeness of the OΛ,λ0
-module

(
R

1ϕ∗C·
Y/Λ

)
λ0

≈ O
µ
Λ,λ0

(3.22)

implies the isomorphism of C-vector spaces

((
R

1ϕ∗Ω·
Y/Λ

)
λ0
/MΛ,λ0

(
R

1ϕ∗Ω·
Y/Λ

)
λ0

) ≈ H
1
(
Lλ0

,Ω·
Lλ0

)
. (3.23)

Here, MΛ,λ0
is the maximal ideal of OΛ,λ0

and Ω·
λ0

is the de Rham complex on ϕ−1(λ0).

Since the de Rham complexΩ·
λ0

is a resolution of the constant sheaf C, we get that

H
1
(
Lλ0

,Ω·
Lλ0

) ≈ H1
(
Lλ0

,C
)
. (3.24)

Thus the rank of (R1ϕ∗C·
Y/Λ)λ0

is equal to the dimension ofH1(Lλ0
,C).

This concludes the proof of the lemma and the proof of Theorem 2.7. �
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